Reactions of NH Radicals. IV. Photolysis of HN₃ in the Presence of CH₄ at 313 nm

Sukeya Kodama*

Department of Applied Chemistry, College of Engineering, University of Osaka Prefecture, Sakai, Osaka 591 (Received September 5, 1983)

The photolysis of HN₃ vapor in the presence of CH₄ was studied at 313 nm, 30 °C, and a low light intensity. The reaction products were N₂, H₂, NH₄N₃, CH₃NH₂·HN₃, and CH₃N₃. CH₃ radicals were also detected as intermediates. The quantum yields of these products were measured as a function of the CH₄ and HN₃ pressures. The following mechanisms for the main reactions were proposed: HN₃+h ν (313 nm) \rightarrow N₂+NH($a^1\Delta$); NH($a^1\Delta$)+HN₃ \rightarrow 2N₂+2H(2a); NH($a^1\Delta$)+HN₃ \rightarrow N₃+NH₂ (2b); NH($a^1\Delta$)+HN₃ \rightarrow N₂+N₂H₂* (2c); NH($a^1\Delta$)+CH₄ \rightarrow CH₃NH₂*(3); NH($a^1\Delta$)+CH₄ \rightarrow NH($X^3\Sigma^-$)+CH₄(4); CH₃NH₂* \rightarrow H+CH₂NH₂ or CH₃NH (5); CH₃NH₂* \rightarrow CH₃+NH₂ (6). The rate-constant ratios at 30°C were: k_3/k_2 =0.175; k_4/k_2 =0.177; k_6/k_5 =0.133. The collisional deactivation of CH₃NH₂* was not found in the total pressure range, from 6.4 to 24.3 kPa.

The photolysis of HN₃ in the presence of Xe,¹⁾ C_2H_6 ,²⁾ and C_2H_4 ³⁾ at 313 nm has been studied previously, and the following facts were found: HN₃ is a useful source for the first excited singlet, NH $(a^1\Delta)$; ethylamine is produced by the insertion of NH $(a^1\Delta)$ into a C-H bond of C_2H_6 , and the reactions of NH $(a^1\Delta)$ with HN₃ and C_2H_4 having the π bond are much faster than that with C_2H_6 consisting of only the σ bond.

On the reactions of $NH(a^1\Delta)$ with C_2H_6 , the collisional deactivation by C_2H_6 from $NH(a^1\Delta)$ to $NH(X^3\sum^-)$ was also found.²⁾ Therefore, it is of interest to compare these reactions between saturated hydrocarbons for the insertion and collisional deactivation reactions. In this work, methane, which is the simplest hydrocarbon, was chosen as the reactant.

On the reactions of NH with CH4, Miller4) has found N2, H2, and NH4N3 as the main products, with HCN and C₂H₆ as minor products, in the photolvsis of HN₃ with CH₄. However, the formation of CH3NH2·HN3 could not be found in the massspectrometric analysis. Cornell et al.5 have studied the flash and steady photolyses of HN₃(DN₃) with hydrocarbons including methane. They have found that the principal nitrogen-containing products are HCN and alkanenitriles in the steady state photolysis. Richardson and Setser⁶⁾ have studied the thermal decomposition of HN₃ in the presence of CH₄ and other hydrocarbons over the temperature range of 285-470°C. They have found N2, NH3, and a nonvolatile polymer as the products in the HN₃ and CH₄ system. However, the formations of H₂, CH₃NH₂, and N₂H₄ were negative in the mass-spectrometric and gas-liquid chromatographic analyses. Thus, they have concluded that the pyrolysis of HN₃ is not a good source of NH.

It appears to be significant to compare the insertion efficiencies of $NH(a^1\Delta)$ into C-H bonds of simple saturated hydrocarbons, the collisional spin-relaxation efficiencies of $NH(a^1\Delta)$ by such hydrocarbons, and the unimolecular decomposition rates of the alkylamines formed by the insertion reactions. From such a standpoint, the reaction mechanism and rates

of the photolysis of HN_3 in the presence of CH_4 were investigated in this work to continue the study with C_2H_6 .²⁾

Experimental

The methane, obtained from the Takachiho Chemical Co., was 99.8% pure. It was purified each time before use by condensation and evacuation at -196°C and the temperature of solid nitrogen (about -220°C). The preparation and purification of HN₃, like the apparatus and procedure used for the reaction, were the same as those described previously.^{1,2)} All the runs in this work were carried out at 313 nm and 30°C. The light intensity was reduced with a screen to suppress any radical-radical reactions. The irradiation time was 90 min, and the degree of conversion of HN₃ was less than 4% for all the runs.

The reaction products were N_2 , H_2 , NH_4N_3 , CH_3NH_2 · HN_3 , and CH_3N_3 . The formation of CH_3N_3 , passing through a Dry Ice-acetone trap, was found by gas-chromatographic analysis using a Silicone SE-30 column.³⁾ No HCN was detected by the pyridine-pyrazolone method.⁷⁾

In order to inspect the radical intermediates, the products of the photolysis of HN₃ with CH₄ and NO were analysed by gas chromatography using an 1-m column of Silicone SE-30 at room temperature. Similarly, the products of the photolysis of CH₃N₂CH₃ with NO or NO₂ were also analysed gas-chromatographically where the same conditions. The retention times of the two peaks of the former products were in accord with those of the latter products. This suggests the formation of CH₃ radicals as intermediates.

For the identification of NH₄N₃ and CH₃NH₂·HN₃, the volatile, white products trapped at the temperature of Dry Ice-acetone were analyzed by means of a mass spectrometer (Hitachi RMU6E); the spectrum is shown in Fig. 1. The peaks of m/z=17, 18, 30, 31, 42, 43, and 57 correspond to NH₃+, NH₄+, CH₂NH₂+ or CH₃NH+, CH₃NH₂+, N₃+, HN₃+, and CH₃N₃+ respectively. However, the parent peaks of NH_4N_3 (m/z=60) and $CH_3NH_2 \cdot HN_3$ (m/z=74) were not found, although a low ionizing voltage of 15 V was applied. On the other hand, the volatile, white products were introduced into a solid-sodium-hydroxide column to remove the HN_{3} . A mass spectrum of the HN_{3} -removed products at the ionizing voltage of 17 V is shown in Fig. 2. The peaks of m/z=17 and 31 indicate the molecular ions of NH₃ and CH₃NH₂ respectively. Thus, the formation of CH₃NH₂·HN₃ and NH₄N₃ was verified.

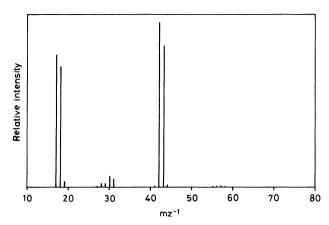


Fig. 1. Mass spectrum of the products trapped at the Dry Ice-acetone temperature. The ionizing voltage is 15 V.

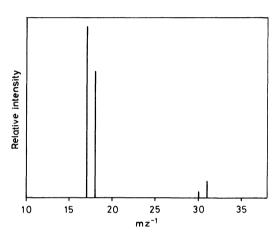


Fig. 2. Mass spectrum of the substances removed HN₃ from the products trapped at the Dry Iceacetone temperature. The ionizing voltage is 17 V.

The HN₃-removed products were also subjected to gaschromatographic analysis at 10°C using a 2-m column of KOH(5%)-paraffin liquid(20%) coated on Chromosorb WAW. The formation of CH₃NH₂ was thus confirmed. However, little CH₃NH₂ was formed in the presence of a small amount of NO.

On the quantitative analyses of N_2 , H_2 , NH_4N_3 , and $CH_3NH_2 \cdot HN_3$, the reaction products were separated at the temperatures of solid nitrogen and Dry Ice-acetone. The gases passing through the trap at $-220\,^{\circ}$ C are N_2 , H_2 , and a part of the CH_4 used as the reactant. The separation of H_2 from the mixture was carried out using a silica-gel column at $-196\,^{\circ}$ C.¹⁾ The separation of N_2 and CH_4 was achieved by gas chromatography using a 5A molecular-sieve column.²⁾

NH₄N₃ and CH₃NH₂·HN₃, condensed at the temperature of Dry Ice-acetone, were introduced into a CuO column at about 550°C. The amounts of N₂, NO, N₂O, and CO₂ formed as combustion products were determined by the method described previously.²⁾ The amounts of CH₃NH₂·HN₃ and NH₄N₃ can be calculated from those equations: [CH₃NH₂·HN₃]=[CO₂] and [NH₄N₃]=([N₂]+[N₂O])/2+[NO]/4-[CO₂].

The quantum yields of the reaction products were determined using HN_3 as an actinometer.¹⁾

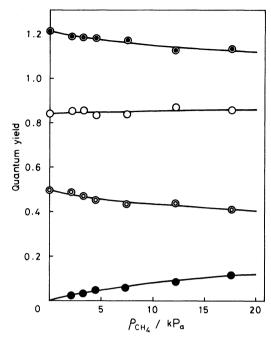


Fig. 3. Results of the photolysis of HN₃ of 6.67 kPa, measured as a function of CH₄ pressure at 313 nm, 30°C, and the low absorbed light intensity of 4.45×10¹⁴ quanta s⁻¹. ②, φ_{N2}/4; O, φ_{NH4N3}; ③, φ_{H2}; ●, φ_{CH3NH2·HN3}.

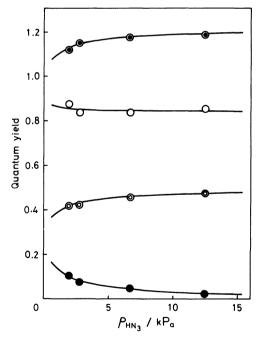


Fig. 4. Results of the photolysis measured as a function of HN₃ pressure at 4.44 kPa of CH₄, 30 °C, 313 nm, and the incident light intensity of 3.83×10¹⁵ quanta s⁻¹. ②, φ_{N₂}/4; ○, φ_{NH₄N₃}; ③, φ_{H₂}; ●, φ_{CH₃NH₂·HN₃}.

Results

The results of the photolysis of HN₃ of 6.67 kPa, measured as a function of the CH₄ pressure at 313

nm and at 30 °C, and the absorbed-light intensity of 4.45×10^{14} quanta s⁻¹ are shown in Fig. 3. It may be seen in Fig. 3 that $\phi_{\rm N_2}$ and $\phi_{\rm H_2}$ decrease, but $\phi_{\rm CH_3NH_2\cdot HN_3}$ and $\phi_{\rm NH_4N_3}$ increase, as the CH₄ pressure increases.

Figure 4 shows the results of the photolysis measured as a function of the HN₃ pressure at 4.44 kPa of CH₄, 30 °C, 313 nm, and at the incident-light intensity of 3.83×10^{15} quanta s⁻¹. In Fig. 4, it is found that $\phi_{\rm N_2}$ and $\phi_{\rm H_2}$ increase, but $\phi_{\rm NH_4N_3}$ and $\phi_{\rm CH_3NH_2\cdot HN_3}$ decrease, with an increase in the HN₃ pressure.

Discussion

Reaction Mechanism. On the basis of the experimental results in this work and in the light of the results achieved by previous investigators, the following reaction mechanism is postulated for the photolysis of HN₃ vapor in the presence of CH₄, where A and M denote HN₃ and CH₄ molecules respectively:

$$A + h\nu(313 \text{ nm}) \longrightarrow N_2 + NH(a^1\Delta)$$
 (1)

$$NH(a^{1}\Delta) + A \longrightarrow 2N_{2} + 2H$$
 (2a)

$$NH(a^{1}\Delta) + A \longrightarrow N_3 + NH_2$$
 (2b)

$$NH(a^{1}\Delta) + A \longrightarrow N_2 + N_2H_2*$$
 (2c)

$$NH(a^{1}\Delta) + M \longrightarrow CH_{3}NH_{2}^{*}$$
 (3)

$$NH(a^{1}\Delta) + M \longrightarrow NH(X^{3}\Sigma^{-}) + M$$
 (4)

$$CH_3NH_2* \longrightarrow H + CNH_4$$
 (5)

$$CH_3NH_2* \longrightarrow CH_3 + NH_2$$
 (6)

$$CNH_4 + A \longrightarrow CH_3NH_2 + N_3 \tag{7}$$

$$CNH_4 + A \longrightarrow CH_3N_3 + NH_2$$
 (8)

$$CH_3 + A \longrightarrow CH_4 + N_3$$
 (9)

$$CH_3NH_2 + A \longrightarrow CH_3NH_2 \cdot HN_3.$$
 (10)

The succeeding reactions for species consisting of only nitrogen and hydrogen atoms are as follows: 10 NH($X^{3}\Sigma^{-}$)+A \rightarrow H₂+2N₂(11); NH($X^{3}\Sigma^{-}$)+A \rightarrow NH₂+N₃ (12); H+A \rightarrow H₂+N₃ (13); H+A \rightarrow NH₂+N₂ (14); N₂H₂* \rightarrow N₂H₂** (15); N₂H₂*+A \rightarrow N₂+H₂+A (16); N₂H₂*+A \rightarrow NH₃+2N₂ (17); N₂H₂**+A \rightarrow NH₃+2N₂ (18); NH₂+A \rightarrow NH₃+N₃ (19); NH₃+A \rightarrow NH₄N₃ (20); N₃+A \rightarrow N₃·A (21); 2N₃·A \rightarrow 3N₂+2A (22).

Since the formation of methylamine has been confirmed by the mass-spectrometric and gas-chromatographic measurements, it is clear that the first excited singlet, $NH(a^1\Delta)$, formed by the photolysis of HN_3 at $313\,\mathrm{nm^{10}}$ reacts to give methylamine by insertion into a C-H bond of CH_4 , just as in the case where the formation of $C_2H_5NH_2$ was found in the

photolysis of HN₃ with C_2H_6 .² Reaction 4 is a collisional spin-relaxation process by CH₄ from NH($a^1\Delta$) to NH($X^3\Sigma^-$), as was found for Xe¹⁾ and C_2H_6 .²⁾

Since the enthalpy change of Reaction 3 is -459.8 kJ mol⁻¹, Reactions 5 and 6 are energetically possible. The unimolecular decompositions of CH₃NH₂* to give 2H₂+HCN, CH₂+NH₃, and H₂+CH₂=NH are also energetically possible. However, these reactions can probably be excluded for the following reasons: No HCN was detected; the formation of C₂H₆ by the insertion reaction, CH₂+CH₄ \rightarrow C₂H₆, was not observed, and the detachment of H₂ from CH₃NH₂* by the molecular mechanism was not found in the reaction kinetics to be discussed later. Reactions other than those described above are not energetically possible for the unimolecular decompositions of CH₃NH₂*, judging from the standard heats of formation listed in Table 1.

For the CNH₄ formed by Reaction 5, two structures of CH2NH2 and CH3NH are possible. Hadley and Volman⁸⁾ have found, by means of the ESR method, that the major radical formed by the photolysis of methylamine in a solid matrix at 184.9 nm is CH₃NH. Hatano et al.9) have also found, by a ESR study that CH₃NH is preferentially formed in the photolysis, by the use of low-pressure mercury lamp, of methylamine adsorbed on the surface of the porous Vycor glass at 77 K. On the photolyses of CD₃NH₂ vapor at 184.9, 147.0, and 123.6 nm, the formations of both CD₂NH₂ and CD₃NH are considerable, judging from the amounts of H2, HD, and D2 formed in the absence and the presence of C₂D₄¹⁰⁾ or NO and O₂. ¹¹⁾ Fukui et al. ¹²⁾ have observed that the production of CH2NH2 from methylamine is less than that of CH₃NH upon the electron impact, while the peak of CD2NH2+ was much higher than that of CD₃NH+ in the mass spectrum of CD₃NH₂. On the other hand, according to simple estimations made by the RRK theory,13) the greater part of the CH₃NH₂* can be expected to decompose to give CH2NH2, because the bond-dissociation energy of CH₃NH-H is 19.7 kJ mol⁻¹, higher than that of H-CH₂NH₂.¹⁴⁾ Judging from the results cited above, it seems that both CH2NH2 and CH3NH radicals are formed in Reaction 5.

Reaction 6 is supported by the fact that CH₃ radicals were detected as intermediates. The collisional deactivation of CH₃NH₂* by a third body is negative, because φ_{CH₃NH₂·HN₃} depends on the concentration ratio [CH₄]/[HN₃], but is independent of the total pressure of CH₄ and HN₃, as will be discussed later. Reaction 7 means that CH₃NH₂ is formed by the hydrogen abstraction of CNH₄ (CH₂NH₂ and CH₃NH) from HN₃. The idea of the existence of CNH₄ radicals is supported by the fact that the formation of CH₃NH₂ is suppressed in the presence of NO. In the same way as has been discussed previously for the succeeding reactions of CH₂NH₂ radicals,²⁾ Reaction

TABLE 1	STANDARD HEATS OF FORMATION
LABLE L.	STANDARD HEATS OF FORMATION

Species	$\frac{\Delta H_{\rm f,298}^{\circ}}{\text{kJ mol}^{-1}}$	Ref.	Species	$\Delta H_{ m f,298}^{ m o}$	Ref.
Species		Kci.	Species	kJ mol⁻¹	
H	218.0	a	CH ₃	146.9	f
$N(^4S_{3/2})$	474.1	a	CH_4	-74.8	f
$N(^{2}D_{5/2})$	703.7	a	CN	418.4	f
$NH(X^3\Sigma^{-})$	352.2	a	HCN	130.5	f
$NH(a^1\Delta)$	506.6	a	HNC	482.4	g
$\operatorname{NH}_2(\widetilde{X}^2B_1)$	171.5	a	CH=NH	312	ĥ
NH ₃	-46.0	a	$CH_2=N$	260	i
HN ₃	299.8	a	CH ₂ =NH	94.6	f
$C(^3P_{\rm o})$	715.0	b	CH_2NH_2	154.8	i
$C(^1D_2)$	837.0	b,c	CH₃NH	174.5	k
CH ~	594.1	b	CH_3NH_2	-28.0	f
$\mathrm{CH}_2(\widetilde{X}^3 \Sigma_{\mathbf{g}}^-)$	384.5	d	CH_3N_3	280.3	f
$CH_2(\widetilde{a}^1A_1)$	<481	d,e	$CH_3-N=CH_2$	72.4	f

a: Ref. 1. b: J.A. Kerr, Chem. Rev., 66, 465 (1966). c: C.E. Moore, "Atomic Energy Levels," Vol. I. National Bureau of Standards, Washington (1949); "Selected Tables of Atomic Spectra," NSRDS-NBS 3, National Bureau of Standards, Washington (1965~). d: W.A. Chupka and C. Lifshitz, J. Chem. Phys., 48, 1109 (1968). e: G. Herzberg, "Electronic Spectra of Polyatomic Molecules," Van Nostrand, New York (1966). f: Ref. 2. g: Ref. 14a. h: Estimated by assuming that the enthalpy change of the CH₂=NH→H+CH=NH reaction is 435 kJ mol⁻¹. i: Estimated by assuming that the enthalpy change of the CH₃-N=CH₂→CH₃+N=CH₂ reaction is 335 kJ mol⁻¹. j: Ref. 14e. k: Ref. 14b.

8 was introduced for the following reasons: the reaction is energetically possible, and CH₃N₃ was found, but no products other than those described above could be detected.

The possibility of the formation of CH_3NH_2 by means of the cross-combination reaction $CH_3+NH_2 \rightarrow CH_3NH_2$ can be excluded, because no C_2H_6 or N_2H_4 (m/z=32) was found to be formed by the self-dimerization reactions of the CH_3 and NH_2 radicals. Miller⁴⁾ has found the formation of small amounts of C_2H_6 and HCN in the photolysis of HN_3 with CH_4 . The formation of HCN was also observed in the photolysis of HN_3 with C_2H_6 at high light intensities.²⁾ It seems that these products are formed by these reactions: $2CH_3 \rightarrow C_2H_6$ and $CNH_4+N_3 \rightarrow HCN+N_2+NH_3$. However, these reactions are negative in the present work, because the photolysis was carried out at a low light intensity and no C_2H_6 and HCN could be detected.

Reaction 9 is a hydrogen-abstraction reaction by CH₃ radicals from HN₃. Konar and Darwent¹⁵⁾ have reported k_9 to be 1.48×10^{-16} cm³ molecule⁻¹ s⁻¹ at 25°C. Creak et al.16) have reported that the specific rate of a hydrogen abstraction reaction by CH3 radicals from CH₄ is $10^{-11.78} \exp[-62.34(k \text{J mol}^{-1})/RT]$ cm3 molecule-1 s-1. From both data, it is found that the hydrogen-abstraction reaction from HN₃ is 7.6× 106 times faster than that from CH₄ at 25°C. On the other hand, Bras and Combourieu17) have found that the rate constant for the reactions of hydrogen atoms with HN₃ is $10^{-10.60} \exp[-19.25(k \text{J} \, \text{mol}^{-1})/RT] \text{ cm}^3$ molecule⁻¹ s⁻¹. Kurylo and Timmons¹⁸⁾ have reported that the specific rate of a hydrogen-abstraction reaction by hydrogen atoms from CH₄ is 10^{-9.94} $\exp[-49.37(k \text{ J mol}^{-1})/RT] \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. From

both results, it is found that the reactions of hydrogen atoms with HN_3 , Reactions 13 and 14, is 3.4×10^4 times faster than that with CH_4 at $30^{\circ}C$.

Judging from these results, it seems that the reactions of CH₄ with the CH₃, NH($X^3\Sigma^-$), H, NH₂, and N₃ radicals are negligible, and that these radicals disappear upon such reactions with reactive HN₃ as Reactions 9, 11 to 14, 19, 21, and 22. Reactions 10, 15 to 18, and 20 have been discussed previously^{1,2)} and so are omitted here.

Reaction Kinetics. The following reaction kinetics were formulated to confirm the mechanism of Reactions 1 to 22 and to obtain the rate-constant ratios.

On the quantum yield of CH₃NH₂·HN₃, this equation:

$$\frac{1}{\phi_{\text{CH}_3\text{NH}_2\cdot\text{HN}_3}} = \frac{k_5 + k_6}{k_5} \frac{k_7 + k_8}{k_7} \left(\frac{k_3 + k_4}{k_3} + \frac{k_2}{k_3} \frac{[\text{HN}_3]}{[\text{CH}_4]} \right) \quad \text{(I)}$$

can be derived, where:

$$k_2 = k_{2a} + k_{2b} + k_{2c}$$

The plot of $1/\phi_{\text{CH}_3\text{NH}_2\cdot\text{HN}_3}$ vs. [HN₃]/[CH₄] is shown in Fig. 5.

On the formations of H₂ and CH₃NH₂·HN₃, Eq. II can be derived:

$$\begin{split} \frac{\phi_{\text{II}_2}}{\phi_{\text{CH}_3\text{NH}_2 \cdot \text{IIN}_3}} &= \frac{k_7 + k_8}{k_7} \left(\frac{k_4}{k_3} \frac{k_5 + k_6}{k_5} \frac{k_{11}}{k_{11} + k_{12}} + \frac{k_{13}}{k_{13} + k_{14}} \right) \\ &+ \frac{k_5 + k_6}{k_5} \frac{k_7 + k_8}{k_7} \left(\frac{2k_{2a}}{k_3} \frac{k_{13}}{k_{13} + k_{14}} \right. \\ &+ \frac{k_{2c}}{k_3} \frac{k_{16}}{k_{16} + k_{17} + k_{15} / [\text{HN}_3]} \right) \frac{[\text{HN}_3]}{[\text{CH}_4]} \end{split} \quad (\text{II}) \end{split}$$

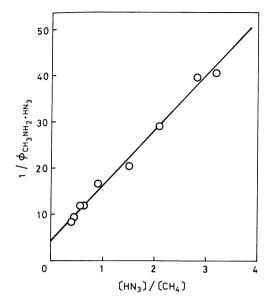


Fig. 5. Plot of $1/\phi_{\text{CH}_3\text{NH}_2\cdot\text{HN}_3}$ vs. [HN₃]/[CH₄].

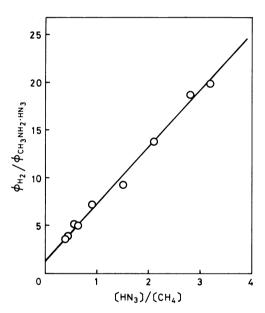


Fig. 6. Plot of $\phi_{H_2}/\phi_{CH_3NH_2\cdot HN_3}$ against [HN₃]/[CH₄].

The plot of $\phi_{\text{H}_2}/\phi_{\text{CH}_3\text{NH}_2\cdot\text{HN}_3}$ vs. [HN₃]/[CH₄] is shown in Fig. 6.

Equation III can be derived for the formations of N_2 , H_2 , and $CH_3NH_2 \cdot HN_3$:

$$\begin{split} \frac{\phi_{\text{N}_2} + \phi_{\text{H}_2}}{\phi_{\text{CH}_3\text{NH}_2 \cdot \text{HN}_3}} &= \frac{k_7 + k_8}{k_7} \left(1 + 4 \frac{k_3 + k_4}{k_3} \frac{k_5 + k_6}{k_5} \right) \\ &+ 4 \frac{k_2 + k_{2a}}{k_3} \frac{k_5 + k_6}{k_5} \frac{k_7 + k_8}{k_7} \frac{[\text{HN}_3]}{[\text{CH}_4]} \end{split} \quad (III) \end{split}$$

The plot of $(\phi_{N_2}+\phi_{H_2})/\phi_{CH_3NH_2\cdot HN_3}$ vs. [HN₃]/[CH₄] is shown in Fig. 7.

By using the values obtained previously¹⁾ of $k_{2a}/k_2=0.336$, $k_{2c}/k_2=0.414$, $k_{12}/k_{11}=3.22$, $k_{14}/k_{13}=1.15$, $k_{15}/k_{16}=2.27\times10^{-7}$ mol cm⁻³, and $k_{17}/k_{16}=1.19$, the

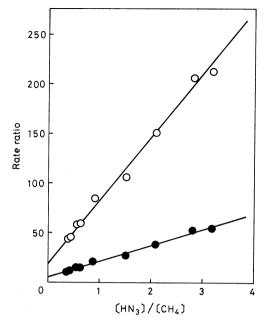


Fig. 7. Plots of $(\phi_{N_2}+\phi_{H_2})/\phi_{CH_3NH_2:HN_3}(O)$ and $(\phi_{NH_4N_3}+\phi_{H_2})/\phi_{CH_3NH_2:HN_3}(\bullet)$ vs. $[HN_3]/[CH_4]$. The lower straight line was calculated from Eq. IV using the known rate constant ratios.

values of k_3/k_2 =0.175, k_4/k_2 =0.177, k_6/k_5 =0.133, and k_8/k_7 =0.85 can be obtained from the intercepts and the slopes in Figs. 5, 6, and 7. As to the value of k_8/k_7 , a value similar to that for CH₂NH₂ radicals²) was obtained.

In order to verify the rate-constant ratios obtained above, Eq. IV was derived for the formations of NH₄N₃, H₂, and CH₃NH₂·HN₃:

$$\begin{split} \frac{\phi_{\text{NH}_4\text{N}_3} + \phi_{\text{H}_2}}{\phi_{\text{CH}_3\text{NH}_2 \cdot \text{HN}_3}} &= \frac{k_3 + k_4}{k_3} \frac{k_5 + k_6}{k_5} \frac{k_7 + k_8}{k_7} + \frac{k_8}{k_7} \\ &+ \frac{k_2 + k_{2n}}{k_3} \frac{k_5 + k_6}{k_5} \frac{k_7 + k_8}{k_7} \frac{[\text{HN}_3]}{[\text{CH}_4]} \end{split} \quad (IV) \end{split}$$

The plot of $(\phi_{NH_4N_3} + \phi_{H_2})/\phi_{CH_3NH_2 \cdot HN_3} vs.$ [HN₃]/[CH₄] is also shown in Fig. 7. The values calculated from Eq. IV using the rate-constant ratios obtained above are shown by the lower straight line in Fig. 7. Fig. 7 shows that the straight line accords well with the experimental values.

Comparisons of Rate Constants. Chao et al.¹⁹⁾ have studied the decomposition rate of the chemically activated CH₃NH₂ which was formed by the reaction of NH₃ with the ¹CH₂ produced by the photolysis of CH₂N₂. They have found that the specific rate of the unimolecular decomposition is 1.7×10¹⁰ s⁻¹ for the photolysis at 435.8 nm and 2.3×10¹⁰ s⁻¹ at 366 nm. The half-lifes for C₂H₅NH₂*2) and n-C₃H₇NH₂*20) were evaluated from these unimolecular decomposition rates. The half-life for CH₃NH₂* in this work was also calculated using the RRKM theory, as will be discussed below. These hallf-lifes are shown in Table 2. Here, the half-life (τ) was calculated from the

TABLE 2. HALF-LIFE AND DECOMPOSITION MODE OF CHEMICALLY ACTIVATED ALKYLAMINES

Alkylamine	Half life(τ)	Fraction by radical mechanism (R_r)	Fraction of R-CH ₂ NH ₂ bond fission $(R_{R-CH_2NH_2})$
CH ₃ NH ₂ ^{a)} CH ₃ NH ₂ ^{b)}	$\approx 7.7 \times 10^{-12^{e}}$ $4.1 \times 10^{-11^{f}}$, $3.0 \times 10^{-11^{g}}$	1.00	0.88 ^{j)}
$C_2H_5NH_2^{c)}$ $n-C_3H_7NH_2^{d)}$	6.8×10 ⁻¹¹ 1.78×10 ⁻¹⁰	0.96 ^{h)} 0.28 ⁱ⁾	$\frac{1.00}{0.96^{k)}}$

a) This work. b) Ref. 19. c) Ref. 2. d) Ref. 20. e) From the RRKM calculation by the Gorin model. f) CH_2N_2 was photodecomposed at $435.8\,\mathrm{nm}$. g) CH_2N_2 was photolyzed at $366\,\mathrm{nm}$. h) The residual fraction is due to the $C_2H_5NH_2*\to CH_3CN+2H_2$ reaction. i) The residual is caused by these reactions; n- $C_3H_7NH_2*\to CH_4+$ C_2H_5N , $C_2H_4+CH_3NH_2$, $C_2H_6+CH_2NH$, $H_2+C_3H_7N$, and $C_3H_6+NH_3$. j) This is the maximum value, because the CH_3NH-H bond fission may also be possible. The residual is due to $CH_3NH_2*\to CH_3+NH_2$. k) This value was estimated from these relations: the formation ratio of n- $C_3H_7NH_2$ to i- $C_3H_7NH_2$ is 1.55; the decomposition rate to give C_2H_5 radicals from both n- and i- $C_3H_7NH_2*$ is 1.39 times faster than the rate to give CH_3 radicals, and the half-life of n- $C_3H_7NH_2*$ is almost the same as that of i- $C_3H_7NH_2*$. The residual fraction is due to n- $C_3H_7NH_2*\to CH_3+CH_2CH_2NH_2$.

 τ =ln $2/\sum_{i}k_{i}$ relation, where k_{i} is the specific rate of i-th unimolecular decomposition. It can be seen in Table 2 that the half-life increases with an increase in the carbon number of alkylamines and with a decrease in the total internal energy in the CH₃NH₂* molecules, as will be discussed below.

The ratio of the sum of the rates of decomposition caused by the radical mechanism to the sum of all the decomposition rates, R_r , is also shown in Table 2. The ratio for decompositions by the molecular mechanism increases with an increase in the carbon number of alkylamines. This may be because the chance for the formation of three- and four-center transition states, resulting in decompositions by the molecular mechanism, increases with an increase in the molecular complexity.

The ratio of the R-CH₂NH₂ bond fission rate to the sum of all single-bond fission rates by the radical mechanism, R_{R-CH₂NH₂, is also shown in Table 2,} where R means H for CH₃NH₂, CH₃ for C₂H₅NH₂, and C_2H_5 for n- $C_3H_7NH_2$. It is found that the ratio for the R-CH₂NH₂ bond fission is very high on these amines. Meanwhile, no C-N bond fission was observed on the unimolecular decomposition of C₂H₅NH₂*,²⁾ although the C-N bond dissociation energy is 20.2 kJ mol⁻¹ lower than that of the C-C bond. Similarly, hardly no C-N bond fission was found on the unimolecular decomposition of n-C₃H₇NH₂*,²⁰⁾ and the probability of the CH3-CH2CH2NH2 bond fission was also found to be very small. Such a high R-CH₂NH₂ bond fission efficiency may be because the CH₂NH₂ group of the activated complex which produces the R-CH2NH2 bond rupture is stabilized by the interaction of an unpaired electron of the C atom with nonbonding electrons of the N atom in the next position.²¹⁾

Although the R-CH₂NH₂ bond fission proceeds with a high efficiency, the $k_5 > k_6$ relation can not be explained in terms of the enthalpy, for the CH₃NH₂ \rightarrow H+CH₂NH₂ reaction is 54.4 kJ mol⁻¹ more endothermic than the CH₃NH₂ \rightarrow CH₃+NH₂(\widetilde{X}^2B_1) reaction.

On the other hand, Kassab et al.²²⁾ have computed the potential surface on the decomposition of CH₃NH₂ using ab initio methods; they have suggested this reaction:

$$CH_3NH_2 \longrightarrow CH_3 + NH_2(\tilde{A}^2A_1)$$
 (6)

for the decomposition of $CH_3NH_2(A')$ in the ground state, as well as where the $NH_3 \rightarrow H + NH_2(\widetilde{A}^2A_1)$ reaction can be anticipated for the decomposition of ammonia in the ground state²³⁾ from the correlation by symmetry.²⁴⁾ Provided that the electronic state of NH_2 formed by Reaction 6 is \widetilde{A}^2A_1 , Reaction 6 becomes 68.2 kJ mol⁻¹ more endothermic than Reaction 5. In this case, the $k_5 > k_6$ relation is explainable.

As for the $HN_3+NH(a^1\Delta)\rightarrow N_3+NH_2(\widetilde{A}^2A_1)$ reaction, of the same kind as Reaction 6, the formation of $NH_2(\widetilde{A}^2A_1)$ has been observed by McDonald *et al.*²⁵⁾ and Piper *et al.*²⁶⁾ Kajimoto *et al.*²⁷⁾ have also observed the emission of $NH_2(\widetilde{A}^2A_1)$ formed by a similar reaction, $HN_3+H\rightarrow N_2+NH_2(\widetilde{A}^2A_1)$. The formation of $NH_2(\widetilde{A}^2A_1)$ by Reaction 6 is also supported by the fact that hardly no C-N bond rupture was found in the unimolecular decompositions of $C_2H_5-NH_2*^{20}$ and $C_3H_7NH_2*^{20)}$

In order to examine the adequacy of Reaction 6 bring about $\mathrm{NH}_2(\widetilde{A}^2A_1)$ and to obtain the absolute value of k_6 , calculation by means of the RRKM theory was carried out. The specific rate calculated by means of the RRKM theory for the unimolecular decompositions of chemically activated molecules, k_E , is given by this equation:²⁸⁾

$$k_{\rm E} = \frac{q_{\rm r}^* q_{\rm ir}^*}{q_{\rm r}} \frac{\Gamma(s)}{\Gamma(s^* + r^*/2 + 1)} \frac{\prod\limits_{i=1}^{s} h \nu_i}{h \prod\limits_{i=1}^{s^*} h \nu_i^* (kT)^{r*/2}} \times \frac{[E^* + a^* E_z^*]^{s^* + r^*/2}}{[E^* + E_0 + a E_z]^{s-1}}$$
(V)

Here, s, s*, and r* indicate the numbers of degrees of freedom for the vibrations of the molecule, and for the

vibrations and internal free rotations of the activated complex, respectively.

In the case of a single-bond fission, the activated complex should be very loose because of the critical state, and it must have the same structure as that for the radical recombination which is a reverse reaction. Thus, the Gorin model²⁹⁾ was used in this case, assuming that the activated complex is an associated form of the CH₃ radical (planar, D_{3h}) and the NH₂($\widetilde{A}^2A_1(\Pi)$) radical (linear, $D_{\infty h}$). According to this "loosest" model, s, s^* , and r^* become 15, 10, and 5 respectively.

 q_r and q_{ir}^* are the partition functions for the rotation of the molecule and the internal free rotation of the complex. By the Gorin model, the partition function for the rotation of the complex, q_r^* , can be expressed by this equation:³⁰⁾

$$q_{\rm r}^{\star} = \frac{8\pi^2 \Gamma(2/3)\mu kT}{\sigma h^2} \left(\frac{2A}{kT}\right)^{1/3} \tag{VI}$$

Since both CH₃ and NH₂ groups are nonpolar, the attractive potential constant in the Lennard-Jones 12-6 intermolecular potential, A, can be calculated from the Slater and Kirkwood equation^{3,31)} for the dispersion term. The polarizabilities of the CH₃ and NH₂ groups were estimated to be 2.24 and 1.78×10⁻³⁰ m³ from the atomic polarizabilities of 1.039(C), 0.905(N), and 0.401(H)×10⁻³⁰ m³. The number of outershell electrons is 7 for both CH₃ and NH₂ groups. The σ in Eq. VI is unity in this case.

The internal energy change of Reaction 6 at 0 K, E_{\circ} , was estimated to be 460.8 kJ mol⁻¹ from the standard enthalpy change of 469.0 kJ mol⁻¹. The vibrational wave numbers $(\overline{\nu}_i)^{32}$ and the moments of inertia¹⁹⁾ for the CH₃NH₂ molecule and the vibrational wave numbers $(\overline{\nu}_i^*)^{33-35)}$ and the moments of inertia for the complex are shown in Table 3. The last term in Eq. V was calculated from the relations derived by Rabinovitch *et al.*³⁶⁾ The values of k_6 at 303 K, measured as a function of the excess energy (E^*) in the activated complex, are shown in Fig. 8.

On the photolysis of HN₃ at 313 nm, an excess energy of 177.9 kJ mol⁻¹ is released and then distributed to N₂ and NH($a^1\Delta$) as fragments. Since the distribution fraction of the energy to NH($a^1\Delta$) is unclear, it was assumed that slightly less than one half of the excess energy is divided to NH($a^1\Delta$). Then, the total internal energy in CH₃NH₂* formed by Reaction 3 becomes about 540 kJ mol⁻¹. Since E_o is 460.8 kJ mol⁻¹, E^* becomes about 79 kJ mol⁻¹. The value of k_6 corresponding to this energy is 1.05×10^{10} s⁻¹ as may be seen in Fig. 8. From $k_6/k_5 = 0.133$, $k_5 = 7.9 \times 10^{10}$ s⁻¹ is obtained. Thus, the half-life of CH₃NH₂* obtained from $\tau = \ln 2/(k_5 + k_6)$ becomes 7.7×10^{-12} s.

RRKM calculations by the methods described above were also carried out for the decomposition rates of the CH₃NH₂* formed under the reaction conditions

Table 3. Models for the unimolecular decomposition of CH_3NH_2

	Molecule		Complex	
	3424	1430	3162	$(2)^{\mathbf{a})}$
	3360	1424	3044	$(1)^{a}$
Wavenumber	2985	1195	$1396(2)^{a}$	
cm ⁻¹	2962	1130	607	$(1)^{\mathbf{b}}$
	2820	1044	3440	$(1)^{c)}$
	1623	780	3325	$(1)^{\mathbf{d})}$
	1485	264	633	$(2)^{d}$
	1474			
Moment of	38.4		5.85 ^{e)}	3.34^{f}
inertia	36.5		$2.92^{e)}$	3.34^{f}
$10^{-47}\mathrm{kg}\mathrm{m}^2$	7.8		$2.92^{e)}$	

a) Ref. 33. b) Ref. 34. c) Estimated value for the antisymmetric stretching vibration of NH₂($\tilde{A}^2A_1(II)$). d) Ref. 35. e) Ref. 24, p. 609. Calculated from $r_0(C-H)=1.079$ Å for CH₃(\tilde{X}^2A_2'' , D_{3h}). f) Ref. 35. Calculated from $r_0(N-H)=1.004$ Å for NH₂($\tilde{A}^2A_1(II)$).

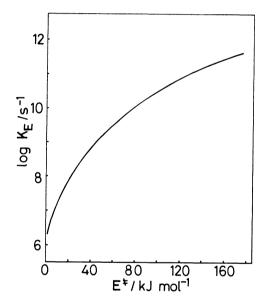


Fig. 8. Specific rate of Reaction 6 by the RRKM calculation, measured as a function of the excess energy.

performed by Chao *et al.*;¹⁹⁾ the calculated values were found to be consistent with their experimental values. The low E^* was the reason that the decomposition rates observed by them are slow as compared with that in this work.

On the other hand, the specific rate for the collisional deactivation of CH₃NH₂* by a third body(Q), k_z , can be calculated from the Lennard-Jones collision frequency as described previously.²⁾ The values of σ and ε/k used in the calculation are 4.30 and 500 for CH₃NH₂,³⁷⁾ 3.82 and 137 for CH₄,³⁸⁾ and 3.98 Å and 240 K for HN₃²⁾ respectively. The highest total pressure in the present work is 24.27 kPa (P_{HN_3} =6.67 and P_{CH_4} =17.60 kPa). In this case, the rate ratio of the collisional deactivation to the unimolecular decompositions of CH₃NH₂*, $k_z[Q]/(k_5+k_6)$, becomes 0.038. This result is consistent with the experimental finding that the collisional

Wavelength	Excitation energy	Relative fraction/%		
nm	kJ mol ⁻¹	H+CNH ₄	H ₂ +CNH ₃	CH ₃ +NH ₂
Chemically activated ^{a)}	≈540 ^{e)}	88.3	0	11.7
244—194 ^{b)}	490—617	91.3	$0_{\mathbf{t}}$	8.7
184.9 ^{c)}	647	89.1	7.4	3.5
147 ^{d)}	814	68	19	13
l 47°)	814	56.4	38.7	4.9
123.6°)	968	55.6	37.9	6.5

TABLE 4. RELATIVE FRACTIONS FOR THE UNIMOLECULAR DECOMPOSITIONS OF THE CHEMICALLY AND PHOTOCHEMICALLY ACTIVATED METHYLAMINE

a) This work. b) Ref. 39. c) Ref. 11. d) Ref. 10. e) Estimated from the enthalpy change. f) The formation amount of H₂ converges to zero with an increase in the pressure of O₂ as a scavenger.

deactivation of CH₃NH₂* could not be found within the limits of experimental accuracy. It thus appears that the calculated values of k_5 , k_6 , and τ obtained above are reasonable.

On the photolysis of CH₃NH₂ vapor, the primary processes are, in general, given by this mechanis:^{10,11,39)}

$$CH_3NH_2 + h\nu \stackrel{H}{\longleftrightarrow} H_2 + CNH_3$$
 $CH_3 + NH_2$

except for the decompositions of $CH_3NH_2+h\nu(123.6 \text{ nm})\rightarrow CH_4+NH(c^1\Pi)$ and others in very-short-wavelength systems.⁴⁰⁾ Provided that the succeeding reactions for H atoms and CH_3 radicals are $H+RH\rightarrow H_2+R$, $CH_3+RH\rightarrow CH_4+R$, and $2CH_3\rightarrow C_2H_6$, the relative fractions for three photodissociation processes can be calculated by means of the following simplified relations: $[H_2-H_2(\text{scav})]/[H_2+CH_4+2C_2H_6]$ for $H+CNH_4$; $[H_2(\text{scav})]/[H_2+CH_4+2C_2H_6]$ for H_2+CNH_3 ; $[CH_4+2C_2H_6]/[H_2+CH_4+2C_2H_6]$ for CH_3+NH_2 . Here, $[H_2(\text{scav})]$ indicates the amount of H_2 formed in the presence of a scavenger such as O_2 and NO. The relative fractions are shown in Table 4, together with the fractions for the unimolecular decompositions of CH_3NH_2* formed by Reaction 3.

Table 4 shows that the relative fractions for the chemically activated CH₃NH₂* are very similar to those for the photochemically activated CH₃NH₂* at 244 to 194 nm, and that the fraction for the formation of H₂ by the molecular mechanism increases with an increase in the excitation energy. It is also found that the fraction for H+CNH₄ is always larger than the fraction for CH₃+NH₂. Regarding this trend, Kassab *et al.*²²⁾ have found, from theoretical considerations, that the potential barrier resulting in the CH₃-NH₂ bond rupture is higher than that for the CH₃NH-H bond rupture on the photodissociation of the lowest excited singlet, CH₃NH₂.

On the efficiencies of the reactions of $\mathrm{NH}(a^1\Delta)$ with saturated hydrocarbons, the rate-constant ratio of the insertion reaction of $\mathrm{NH}(a^1\Delta)$ into a C-H bond to the reactions of $\mathrm{NH}(a^1\Delta)$ with HN₃ is 0.175 (k_3/k_2) for CH₄ and 0.334 for C₂H₆.²⁾ The low efficiency for CH₄ may be due to the facts that the number of C-H bonds

of CH₄ is less than that of C_2H_6 and that the C-H bond-dissociation energy of CH₄ is higher than that of C_2H_6 . The rate-constant ratio of the collisional spin relaxation of NH($a^1\Delta$) to Reaction 2 is 0.177 (k_4/k_2) for CH₄, and 0.217 for C_2H_6 .²⁾ The difference may be because the collisional spin-relaxation efficiency depends on the molecular complexity, that is, the number of atoms constituting a saturated hydrocarbon molecule. More details will be presented in a later work.²⁰⁾

The reaction efficiencies of $NH(a^1\Delta)$ Summary. with CH₄ and the unimolecular decomposition rates of the CH3NH2* formed by the insertion were investigated. The insertion efficiency of NH($a^1\Delta$) into a C-H bond of CH₄ was 0.52 as compared with that of C₂H₆. This difference appears to be caused by the higher C-H bond dissociation energy and the lower C-H bond number than those for C₂H₆. The collisional deactivation efficiency of $NH(a^1\Delta)$ to $NH(X^3\Sigma^{-})$ by CH₄ was 0.82 of that by C₂H₆. The unimolecular decomposition, $CH_3NH_2*\rightarrow H+CNH_4$ (5), was 7.5 times faster than the CH₃NH₂*→CH₃+NH₂ (6) decomposition, although the C-H or N-H bond dissociation energy is higher than that of the C-N bond. However, this is explainable provided that the electronic state of NH₂ formed by Reaction 6 is \widetilde{A}^2A_1 . From the RRKM calculation by the Gorin model, $k_5 \approx 7.9 \times 10^{10} \,\mathrm{s}^{-1}$, $k_6 \approx 1.05 \times 10^{10} \,\mathrm{s}^{-1}$, and τ (half-life of $CH_3NH_2*)\approx 7.7\times 10^{-12}$ s were estimated. These results are in accord with the experimental result that the collisional deactivation of CH₃NH₂* was not observed in the total pressure range lower than 24.3 kPa.

I would like to thank Mr. Jun Fukuchi for his cooperation.

References

- 1) S. Kodama, Bull. Chem. Soc. Ipn., 56, 2348 (1983).
- 2) S. Kodama, Bull. Chem. Soc. Ipn., **56**, 2355 (1983).
- 3) S. Kodama, Bull. Chem. Soc. Jpn., 56, 2363 (1983).
- 4) E. D. Miller, Ph. D. Dissertation, Catholic University of America, Washington, D. C., 1961.
- 5) D. W. Cornell, R. S. Berry, and W. Lwowski, J. Am. Chem. Soc., **88**, 544 (1966).
 - 6) W. C. Richardson and D. W. Setser, Can. J. Chem., 47,

2725 (1969).

- 7) J. M. Kruse and M. G. Mellon, *Anal. Chem.*, **25**, 446 (1953).
- 8) S. G. Hadley and D. H. Volman, J. Am. Chem. Soc., 89, 1053 (1967).
- 9) K. Hatano, N. Shimamoto, T. Katsu, and Y. Fujita, Bull. Chem. Soc. Ipn., 47, 4 (1974).
- 10) J. J. Magenheimer, R. E. Varnerin, and R. B. Timmons, J. Phys. Chem., 73, 3904 (1969).
- 11) E. P. Gardner and J. R. McNesby, J. Phys. Chem., **86**, 2646 (1982).
- 12) K. Fukui, I. Fujita, and K. Kuwata, *Bull. Chem. Soc. Jpn.*, **45**, 2278 (1972).
- 13) By assuming $D(H-CH_2NH_2)=400.8$, $D(CH_3NH-H)=420.5$ kJ mol⁻¹, s-1=8, and the same frequency (ν) for both decompositions, the formation ratio of CH_2NH_2 to CH_3NH becomes 26 for E*=459.8 as the standard enthalpy change of Reaction 3 and 3.4 for E*=540 kJ mol⁻¹, as will be discussed later, from the calculations of the RRK rate expression $k_d=\nu(1-D/E*)^{s-1}$.
- 14) a) S. W. Benson, "Thermochemical Kinetics," Wiley, New York, 1968; b) S. W. Benson and H. E. O'Neal, "Kinetic Data on Gas Phase Unimolecular Reactions," NSRDS-NBS-21, National Bureau of Standards Reference Data System, U. S. Department of Commerce (1970); c) D. M. Golden, R. K. Solly, N. A. Gac, and S. W. Benson, J. Am. Chem. Soc., 94, 363 (1972); d) A. A. Zavitsas, ibid., 94, 2779 (1972); e) D. K. S. Sharma and J. L. Franklin, ibid., 95, 6562 (1973); f) "Handbook of Chemistry and Physics," 55th ed, ed by R. C. Weast, Chemical Rubber Co. Press, Cleveland, Ohio (1974—1975); g) R. T. Sanderson, J. Am. Chem. Soc., 97, 1367 (1975).
- 15) R. S. Konar and B. DeB. Darwent, Can. J. Chem., 48, 2280 (1970).
- 16) G. A. Creak, F. S. Dainton, and K. J. Ivin, *Trans. Faraday Soc.*, **58**, 326 (1962).
- 17) G. Le Bras and J. Combourieu, *Int. J. Chem. Kinet.*, **5**, 559 (1973).
- 18) M. J. Kurylo and R. B. Timmons, J. Chem. Phys., **50**, 5076 (1969).
- 19) K. J. Chao, C. L. Lin, M. Hsu, and S. Y. Ho, *J. Phys. Chem.*, **83**, 1241 (1979).

- 20) S. Kodama, Bull. Chem. Soc. Jpn., 58, 2900 (1985).
- 21) J. M. Howell and P. Jørgensen, J. Am. Chem. Soc., 95, 2813 (1973).
- 22) E. Kassab, J. T. Gleghorn, and E. M. Evleth, J. Am. Chem. Soc., 105, 1746 (1983).
- 23) A. E. Douglas, Disc. Faraday Soc., 35, 158 (1963).
- 24) G. Herzberg, "Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules," Van Nostrand Reinhold Co., New York (1966), p. 460.
- 25) J. R. McDonald, R. G. Miller, and A. P. Baronavski, Chem. Phys. Lett., 51, 57 (1977).
- 26) L. G. Piper, R. H. Krech, and R. L. Taylor, J. Chem. Phys., 73, 791 (1980).
- 27) O. Kajimoto, T. Kawajiri, and T. Fueno, *Chem. Phys. Lett.*, **76**, 315 (1980).
- 28) R. A. Marcus, J. Chem. Phys., 20, 355, 359 (1952); G. Z. Whitten and R. S. Rabinovitch, ibid., 41, 1883 (1964).
- 29) E. Gorin, Acta Physicochim. URSS, **9**, 681 (1938); E. Gorin, W. Kauzmann, J. Walter, and H. Eyring, J. Chem. Phys., **7**, 633 (1939).
- 30) E. V. Waage and B. S. Rabinovitch, *Chem. Rev.*, **70**, 377 (1970).
- 31) J. C. Slater and J. G. Kirkwood, *Phys. Rev.*, **37**, 682 (1931); J. G. Kirkwood, *Physik. Z.*, **33**, 57 (1932).
- 32) A. Y. Hirakawa, M. Tsuboi, and T. Shimanouchi, *J. Chem. Phys.*, **57**, 1236 (1972).
- 33) A. Snlson, J. Phys. Chem., 74, 537 (1970).
- 34) L. Y. Tan, A. M. Winer, and G. C. Pimentel, *J. Chem. Phys.*, **57**, 4028 (1972).
- 35) Ref. 24, p. 584.
- 36) G. Z. Whitten and B. S. Rabinovitch, *J. Chem. Phys.*, **38**, 2466 (1963); D. C. Tardy and B. S. Rabinovitch, *ibid.*, **48**, 1427 (1968).
- 37) Estimated from the values of σ and ε/k for the NH₃, CH₃OH, CH₃Cl, C₂H₄, and C₂H₆ molecules.
- 38) J. O. Hirschfelder, R. B. Bird, and E. L. Spotz, *J. Chem. Phys.*, **16**, 968 (1948).
- 39) J. V. Michael and W. A. Noyes, J. Am. Chem. Soc., 85, 1228 (1963).
- 40) M. Kawasaki and I. Tanaka, J. Phys. Chem., 78, 1784 (1974).